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ABSTRACT

During September 1989 the USNS BARTLETT occupied a dense array of 48 high-quality

CTD stations in the Green!and Basin to characterize the Jan Mayen Current (JMC) system as part

of the Greenland Sea Project. Hydrographic analyses characterize the JMC by an eastward

bowing of East Greenland Current (EGC) waters in the form of a surface Polar Water (PW)

tongue, a near-surface (-50 m) core of modified Polar Water, and an intermediate (-100 m) core

of Atlantic Water displaced -75 km northward of the PW core. In contrast, the Greenland Sea

Gyre is very weakly stratified aside frolA a thin surface gradient. Historical data demonstrate the

JMC axis to move -100 km north and south of its 1989 observed position near 74°N and show

that upper water column temperatures and salinities were significantly lower in 1989 and 1982

than in 1958, possibly indicating an anomalous excess of PW in 1989 and 1982 compared with

1958. The dynamic height pattern (0-1000 dbar) supplemented with Lagrangian ice drift rates

reveal the JMC as partly an anticyclonic meander in the EGC; the drifters indicate a significant

barotropic component. Baroclinic transport estimates yield a 2 Sv initial eastward transport by

the JMC. This transport results in an annual freshwater excess of 1.4 m over the survey area

which equates to roughly one fourth of the annually available fresh water in the EGC. Deep

water analyses show that isopycnal mixing of Eurasian Basin Deep Water and Greenland Sea

Deep Water to yield Norwegian Sea Deep Water occurs within the Greenland Basin. Historical

data indicate no appreciable inter-annual fluctuation in deep water properties occurs between

1958 and 1989.
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I. INTRODUCTION

This study consists of a detailed analysis of hydrographic data collected during the

September 1989 cruise of the USNS BARTLETT for the purpose of characterizing the

structure and circulation of the Jan Mayen Current and deep water properties in the

Greenland Basin. The BARTLETT 89 cruise is a component of the on going Greenland

Sea Project described below.

A. OVERVIEW

A large portion of physical oceanographic research is presently focused on polar

processes. This interest stems partly from the recent, increased desire to more fully

understand the "oceans' role in climate" (Muench, 1990a) and partly from the paucity of

data occasioned by the near complete inaccessibility of these areas owing to harsh

environmental conditions and extended periods of near total darkness. Physical processes

in the Nordic Seas are a vital link between climatic changes and the World Ocean since

it is here that a large proportion of global bottom waters are formed. In forming these

bottom waters vertical circulation mechanisms transmit the climatic signature of the

surface waters to the deep ocean. Such spatial and temporal small-scale processes as may

be involved in ventilation of the deep oceans are of limited usefulness, however, without

the consideration of full context of interrelated physical phenomena in the Nordic Seas

which span the gamut of scales.



B. TIlE GREENLAND SEA PROJECT

The Greenland Sea Project (GSP) is a five year, multi-national effort to probe the

physical oceanography of the Nordic Seas. The keystone of the GSP philosoph) is to

make the utmost attempt to ensure that the data obtained by all investigators are inter-

comparable to a high degree of accuracy so that such small amplitude seasonal and inter-

annual signals as may be present may be detected. To this end all hydrographic

instruments are to be calibrated at the Ocean Data Facility of Scripps Institution of

Oceanography. Additionally, investigators have agreed to perform an in situ calibration

cast at the designated inter-calibration site in the deep Lofoten Basin. The GSP inter-

calibration site and a census of hydrographic stations is shown in Figure 1.1.

Investigators have agreed to orient their sampling legs to accommodate a maximum

number of these stations.

By virtue of its name the GSP predominantly concerns processes in the Greenland

Sea but has a small fraction of its observations in the Norwegian Sea. Participating

institutions are assigned specific aspects or areas of the general circulation to investigate

in detail. Also, to assess intei-annual fluctuations in circulation two intense sampling

periods were planned. The first period occurred from 1988 to 1989 and the second is

scheduled from 1992 to 1993 with low-level monitoring between these periods.

C. GENERAL CIRCULATION

The following is a brief overview of circulation in the Nordic Seas. The large-scale

circulation in the Greenland Sea which occupies the Boreas and Greenland basins is

2
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dominated by a boad cyclonic gyre surrounded in four cardinal directions by major

currents or features. Cold, fresh surface polar waters exit the Arctic Ocean within the

southward flowing East Greenland Current (EGC) through the west side of the passage

between Spitsbergen and Greenland, referred to as Fram Strait. The EGC follows the east

Greenland con .nental slope and forms the western boundary of the Greenland Sea Gyre

(GSG). Warm, saline surface Atlantic waters and colder, less saline arctic intermediate

waters flow northward in the Norwegian Atlantic Current (NAC) which becomes the West

Spitsbergen Current (WSC) off Spitsbergen. This current system remains largely in the

Norwegian Sea on the east side of the Mohn Ridge which is a bathymetrically prominent

extension of the mid-Atlantic Ridge, thus forming the eastern perimeter of the GSG.

Some of these Atlantic waters enter the Arctic Ocean through the east side of Fram Strait

and some recirculate southward joining the EGC, isopycnally sinking to intermediate

levels in either case. This recirculation gives rise to the East Greenland Polar Front

within the EGC and forms the northern boundary of the GSG. The remaining southern

limb of the GSG is defined by the Jan Mayen Current (JMC). The JMC consists of

surface polar waters and Atlantic intermediate waters bowing eastward from the EGC

north of the Jan Mayen Fracture Zone (JMFZ), a major bathymetric feature delineating

the southern periphery of the Greenland Basin.

Waters in the Nordic Seas have been observed to be very weakly stratified and

measurements have been .ade indicating flows are significantly barotropic. The deep

circulation through the Greenland and Boreas basins is considered to be closely tied to

the surface and intermediate flows which demonstrate a response to bathymetric features.

4



Thus, the deep waters here flow in a cyclonic gyre, effectively an extension of the surface

and intermediate circulation described earlier. These cold, moderately saline deep waters,

formed through convective, double-diffusive, and other dynamic processes in the GSG and

peripheral shelf regions, vary minutely in temperature and salinity, but with sufficiently

different values to delineate their in situ density levels and identify them with their

predominant basins of residence.

D. PURPOSE

This study is concerned with the analysis of high-quality CTD data obtained during

the September 1989 cruise of the USNS BARTLETT as part of the first intense GSP

sampling period. The GSP-assigned focus was to characterize the Jan Mayen Current,

a region which, up to now, has received only cursory treatment in the literature due to a

paucity of high-quality hydrographic data. The objectives of this investigation are

extracted from the BARTLETT 89 preliminary cruise report of Bourke et al. (1989) and

are listed below:

* establish northern and southern boundaries for the JMC and describe frontal

boundaries

" determine the eastward extent of the JMC

" establish its relation to bathymetry, in particular the JMFZ

" determine the flow rate of the JMC based on geostrophic calculations and ice drift
rates

* determine the rate of transport of fresh water into the GSG by the JMC

5



• determine the deep water characteristics in the Greenland Basin and re-affirm
prevalent theories of deep circulation and mixing in the basin.

In the succeeding chapters the BARTLETT 89 data are analyzed to achieve the

above objectives. Supplemental data are utilized to augment this analysis. Also,

comparison with historical data enables an assessment of seasonal and inter-annual

variability in the region.

6



II. DATA AND METHODS

A. DATA COLLECTION

1. Cruise Summary

A hydrographic survey was conducted on board the USNS BARTLETT (T-

AGOR-13) during September 1989. The scientific party embarked at Tromso, Norway

on 6 September with a complement representing the Naval Postgraduate School, Scripps

!ns:itution of Oceanography, and the University of Paris and disembarked at Trondheim

on 23 September. The 2784 nautical mile survey track consisted of five southwest-

northeast tending legs which transect the western and central Greenland Basin. A total

of 48 closely-spaced 0(30-50 kin), high-quality CTD stations were accomplished 43 of

which consisted of a single cast to 1000 m depth, 4 of which added a second cast from

1000 to 3000 m or the bottom, and the final station consisted of a single cast to 3500 m

(Figure 2.1). Stations with casts below 1000 m are encircled on Figure 2.1. Of the 48

stations, 19 were GSP stations (see Figure 1.1). Navigation was accomplished via the

ship's satellite navigation system which provided an average of three fixes per hour of

betier than 0.5 km accuracy.

2. Instrumentation and Mcasurements

The BARTLETT 89 data set consists of measurements of conductivity,

temperature, pressure, and dissolved oxygen, The primary hydrographic instrument was

a four-sensor Neil Brown Mark Ill CITD which was statically and dynamically calibrated

7
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Figure 2.1 USNS BARTLETT station plan of September 1989. A total of 48 high-quality -1000

m CTD stations were accomplished (solid dots). A second deep cast from -1000 to 3000

m was accomplished at five of these stations (circled stations). The BARTLETT was

unable to sample the inter-cal site, however, this site was sampled as Station 32 during

the 1989 cruise of the HAAKON MOSBY. Data from this station is utilized in Chapter

V. (courtesy of A. Foldvik, personal communication). Bathymetry is shaded at 1000 m

intervals.
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before and after the cruise at the Ocean Data Facility (ODF) at Scripps Institution of

Oceanography (SIO) in keeping with the precepts of the Greenland Sea Project (GSP).

The CTD was fastened to a standard instrument cage provided by SIO which

included a 12-place rosette sampler. The unit was lowered at a constant rate of

60 m min', varying with ship's roll. The data acquisition program recorded 8616 bytes

per cast evenly spaced over the pressure range which was selected prior to lowering. This

equates to approximately 9 observations per meter for 1000 m casts and 4.3 observations

per meter for 1000-3000 m casts.

For shallow casts, Nisken bottles were closed on the up cast at 100 m intervals

with the final two at 75 and 10 m. For deep casts bottles were closed at 200 m intervals

with last three at 1 100, 700, and 300 m. Low-temperature reversing thermometers were

usually fastened to bottles 2, 11, and 12 with 12 being the deepest. Thermometer/bottle

firing depths were adjusted to seek isothermal layers. D. Muus of SIO deftly conducted

on board salinity bottle analysis utilizing an Autosal calibrated to Wormley standard

seawater from batch number 108 which is designated for use by GSP investigators. These

measurements formed the basis for the conductivity correction equations developed by the

ODF for the final data report. Dissolved oxygen concentrations were determined via the

Winkler method and saturation calculations were made at each sample depth.

B. DATA PROCESSING

Upon completion of the cruise the data were transferred from 3.5 inch diskettes to

tape for editing on the Naval Postgraduate School (NPS) IBM Mainframe computer. A

9



data editing program was developed to remove occasional spurious data points and apply

the final temperature and conductivity corrections resulting from the ODF analysis.

A non-linear pressure sensitivity of the CTD conductivity cell was detected with the

error greater at 3000 m than at 1000 m. The shallow stations could be corrected by one

common equation with an acceptable final standard deviation of ± 0.003 PSU; however,

the deep stations required individual equations for best results with a final standard

deviation of ± 0.0012 PSU. The final accuracy for temperature measurements was

0.002'C and 3 dbar for pressure. Further detail of the data editing process is documented

in the BARTLETT 89 data report (Bourke et al., 1990).

Densities throughout this study are calculated using the EOS80 formula and appear

in sigma notation e.g., o, = (p - 1(X00) kg m-' or Op = (pp - 1000) kg m-3 .

C. ADDITIONAL DATA SOURCES

This study has been greatly enhanced by the availability of several additional

sources of data, three of which were expressly made available for this study through

personal communiqu6.

Used throughout this study for seasonal and historical comparison are the elegantly

prepared atlases of Dietrich (1969) and Koltermann and Liithje (1989). From Dietrich

(1969) were extracted the results of the summer (September to October) and late winter

(March to June) surveys of the JOHAN HJORT and POLJARNIK during the International

Geophysical Year (IGY) of 1958. The portions of the JOHAN HJORTiPOLJARNIK 58

station plans which correspond to the BARTLETT 89 survey area are shown in

10



Figures 2.2 and 2.3 for summer and winter, respectively. The IGY data are available

from the NODC data base at the NPS and were utilized to construct vertical sections and

T-S plots for specific comparison to BARTLEITT 89 data. The 1958 salinities were

determined via Mohr titration and temperatures were measured utilizing reversing

thermometers. Accuracies of these measurements are discussed later as needed. From

Koltermann and Liithje (1989) were extracted the results of the winter 1982 surveys of

the HUDSON (February to April) and METEOR 61 (May to June). The combined

station plans are shown in Figure 2.4. It is recognized that some of the historical winter

data is not truly "winter" but certainly representative of conditions prior to intense

summer heating. They have been included in these atlases due to the paucity of winter

data in these regions.

Three sources of data are mentioned here for completeness, btt are introduced in

detail as they are utilized in the following chapters. First are the positions (approximately

hourly) of three ice floes tracked via ARGOS beacons from May to August 1989 during

ARCTEMIZ 89 (Gascard and Richez, 1989). These floes fortuitously happened to enter

the BARTLETT 89 survey area. These data were made available on tape by J.-C.

Gascard (personal communication). Second are the deep cast bottle data from the GSP

inter-calibration site, Station 32, of the 1989 cruise of the HAAKON MOSBY. These

data, made available by A. Foldvik (personal communication), are greatly appreciated

since the BAP.TLETT was unable to reach this site due to weather and mechanical

difficulty. Third are the analysis of results of a general circulatic'n model of the

Greenland-Norwegian Sea developed at the University of Hamburg. Analyses specific
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Figure 2.4 JOHIAN rJORT (solid dots) and POLJARNIK (x's) stations in the Greenland Sea from
cruises in winter 1958 of the International Geophysical Year. Note the absence of stations
north of 75'N and that legs are separated by up to one degree of latitude (from Dieirich,
1969).
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to the BARTLETT 89 survey area were made available by S. Legutke (personal

communication).

Bathymetry is compiled from a combination of the DBDB5 digital data base and

a bathymetric chart of the Greenland-Norwegian and western Barents seas (Perry et al.,

1984). The ice edge positions in 1989 are obtained from a combination of DMSP OLS

visual and infrared images and the Southern Ice Limit Analysis of the Naval Polar

Oceanography Center.
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III. HYDROGRAPHY

A. INTRODUCTION

The Jan Mayen Current (JMC) plays a major role in water mass formation and

circulation in the Greenland Basin. This current is the medium by which cold, fresh

surface waters and warm, saline intermediate waters from the East Greenland Current

(EGC) are transported into the Greenland Basin, and more importantly, to the Greenland

Sea Gyre (GSG), one of the primary centers of winter deep convection in the World

Ocean. One can envision the GSG as the mortar and the JMC as the pestle with which

nature delicately attempts to concoct the proper water mass blend to trigger winter

convective overturn.

This chapter provides a detailed rendering of the hydrographic structure within the

Greenland Basin and the influence of the JMC on this structure. Also included in this

discussion are what the hydrographic structure may signal about the circulation in the

basin and how this structure varies on a seasonal and inter-annual basis. Evidence will

be presented in this and the following chapter that the JMC is partly an anticyclonic

meander in the seaward portion of the EGC rather than solely an eastward current

forming the southern limb of the GSG indicated by traditional theory.
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B. SURFACE AND INTERMEDIATE WATER MASSES

Three broad categories of water masses exist in the Greenland Basin:

0 Polar Water (PW) is a cold, fresh surface water usually of Arctic Ocean origin and
transported into the region by the EGC. PW is usually found within 100 m of the
C rface.

* Atlantic Water (AtW) is a warm, saline surface or intermediate water initially
transported into the area as a surface water of the Norwegian Atlantic Current
(NAC). Surface AtW is usually found in the upper 200 m of the water column,
whereas intermediate AtW typically occurs between 100-400 m.

0 Arctic Water (ArW) is a generic term for the characteristic surface and intermediate
waters formed in the Nordic Seas usually a mixture of the previous two water
masses. Surface ArW usually occurs within 100 m of the surface and intermediate
ArW breaches the water column between the surface layer and the deep waters at
depths exceeding 1000 m.

A complete scheme of specific surface and intermediate water mass variants from

the above general categories appears in Figure 3.1 and Table 3.1 adapted from Hopkins

(1988). Primary water masses are defined as those which exist outside tb JMC whereas

secondary water masses are those which compose the JMC. A general description follows

of water masses and their relative locations in the Greenland Basin (largely adapted from

Hopkins, 1988).

1. Surface Water Masses

Three primary surface water masses reside within the Greenland Basin. The

first is a cold, fresh surface PW with origins in the Arctic Ocean, which is transported to

the Greenland Basin via the EGC (Bourke et al., 1987). Within the EGC and the

Greenland Basin, this PW is referred to as Greenland Polar Water (GPW). The second
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Figure 3.1 Greenland-Norwegian Sea surface and intermediate water mass circulation schematic. In
the north, the East Greenland Current (EGC) carries surface Greenland Polar Water
(GPW) from the Arctic Ocean into the region; similarly in the south, the Norwegian
Atlantic Current (NAC) carries in Norwegian Atlantic Surface Water (NAtSW) and
Norwegian Arctic Intermediate Water (NArIW). NAtSW sinks isopycnally in the West
Spitsbergen Current (WSC) to supply intermediate water to the Arctic Ocean via Fram
Strait, the EGC as Return Atlantic Intermediate Water (RAtIW), and directly to the
Greenland Sea from the east as Greenland Atlantic Intermediate Water (GAfIW). The Jan
Mayeri Current (JMC) consists of waters which bow from the EGC. The cyclonic
Greenland Sea Gyre (GSG) consists of a mixture of waters from the surrounding
circulations. Refer to Table 3.1 for complete water mass descriptions.
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Table 3.1 Surface and Intermediate Water Masses of the Greenland Basin (after
Hopkins, 1988). The temperature and salinity ranges of JMPW and
JMAtIW are broadened from the values given in Hopkins (1988) based oa
BARTLETT 89 observations; similarly those of RAtlW are broadened
based on the observations of Bourke et al. (1987). Note that JMPW and
GArIW are also components of JMAtIW.

Surface Waters

Primary Secondary

Greenland
Polar < 50 C
Water < 34.4 Jan Mayen 0 to -1.50C
(GPW) Polar Water 34.0 - 34.7

Greenland 
(JMPW)

Arctic freezing to 5°C
Surface Water 34.7 - 34.9
(GArSW)

Norwegian
Atlantic > 2°C
Surface > 35.0
Water
(NAtSW)

Intermediate Waters

Return
Atlantic 0 to 3°C
Intermediate 34.9- 35.0 Jan Mayen
Water Atlantic 0 to 1.5"C
(RAtIW) Intermediate 34.8 - 35.0

Water
Greenland (JMAtlW)
Arctic < 2°C
Intermediate 34.7- 34.9
Water
(GArIW)

Norwegian
Arctic 0.50C
Intermediate 34.88
Water
(NArIW)
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is a warm, saline surface AtW which is initially transported into the region by the NAC.

This Norwegian Atlantic Surface Water (NAtSW) skirts the eastern periphery of the

Greenland Basin in the NAC which, further north, becomes the West Spitsbergen Current

(WSC). NAtSW sinks along isopycnals as it encounters less dense surface PW in Fram

Strait region and becomes intermediate AtW which is supplied to both the Eurasian Basin

and EGC. The third primary water mass is a surface ArW characteristic of the GSG

which is a mixture of GPW and NAtSW. This surface ArW is termed Greenland Arctic

Surface Water (GArSW) within the Greenland Basin and is the only water mass which

undergoes significant seasonal changes in temperature. The mixture of GPW and GArSW

yields a slightly denser, near-surface, secondary water mass within the JMC termed Jan

Mayen Polar Water (JMPW). The temperature ranges of these water masses overlap, thus

they are best distinguished by salinity.

2. Intermediate Water Masses

Three primary intermediate water masses are present in the Greenland Basin.

The first, Return Atlantic Intermediate Water (RAtlW), is the portion of subducted

NAtSW which branches cyclonically from the WSC to join the EGC just south of Fram

Strait (Bourke et al., 1988). Within the EGC a warm, saline core of RAtlW lies to the

east of and beneath the East Greenland Polar Front (EGPF) at depths between 100 to

400 m (Bourke et al., 1987). The second primary water mass, Greenland Arctic

Intermediate Water (GArlW), characterizes the cold, moderately saline, weakly stratified

intermediate layer between GArSW and the deep waters in the GSG. The third,

Norwegian Arctic Intermediate Water (NArIW), forms a homogeneous layer about 200 m
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thick evidenced by a temperature and salinity minimum between NAtSW and the deep

waters in the NAC. This NAriW layer is thought to be a lateral extension of the

intermediate waters of the Icelandic Current.

Jan Mayen Atlantic Intermediate Water (JMAtIW) is a secondary water mass

formed by the dilution of RAtIW by GArlW and JMPW and is the intermediate water of

the JMC. Within the JMC a warm, saline core of JMAtIW is found between 50 and

400 m. Greenland Atlantic Intermediate Water is a warm, saline mixture of NAtSW and

GArSW found along the east side of the Greenland Basin. This water mass was not

observed in the BARTLETT 89 survey due to station locations, but is included to

complete the description of water masses in the basin.

C. SURFACE WATER SIGNATURE

1. Summer Surface Signature

a. Surface Temperature

The BARTLETT 89 surface temperature contour pattern is depicted in

Figure 3.2. The sharpest gradient occurs across Stations 2 to 5 within the EGC. Since

the above group of stations does not progress westward shallower than the 2000 m isobath

nor westward of the 0 C isotherm, only the seaward fringe of !he EGC is sampled. The

temperature gradient can be expected to increase somewhat more than pictured as the ice

edge is encountered farther to the west (Paquette et al., 1985; Bourke et al., 1987).

These stations are located over the lower East Greenland Continental Slope just south of

the deepest point along the west end of the Greenland Fracture Zone (GFZ). This
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Figure 3.2 BARTLETT 89 surface temperature (°C). The temperature gradient is greatest between
Stations 3 to 5 in the fringe of the East Greenland Current (EGC). Cold Greenland Polar
Water bows eastward from the EGC south of 74"N in the Jan Mayen Current. Warm
Norwegian Atlantic Surface Water in the Norwegian Atlantic Current encroaches on the
Greenland Basin between Stations 45 to 48. Mean ice edge shown as a heavy dashed
line.
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depression in the isthmus which connects the GFZ to the continental slope allows the

deep waters of the EGC to pass freely to a depth of approximately 2600 m from the

Boreas Basin to the Greenland Basin. This depth is also the sill depth confronted by the

EGC as it passes southward from Fram Strait.

The surface temperature gradient associated with the EGC continues

southward, unhindered, until it crosses the eastward turning 3000 m isobath. This isobath

marks the base of the slope of the Jan Mayen Fracture Zone (JMFZ) to the south and

Mohn Ridge to the east. At this point the contours of surface temperature progressively

broaden and bow eastward until approximately where the 2000 m isobath is crossed

(south of 74°N) at which point they turn westward with decreasing separation to rejoin

the EGC. This 2000 m isobath corresponds closely with the deepest point between the

Jan Mayen Fracture Zone (JMFZ) and the East Greenland Continental Slope which is

about 1600 m. This deepest channel is the ultimate passage for any deep waters of the

EGC that may flow southward from the Greenland Basin to the Icelandic Plateau.

In i 'igure 3.2 the JMC presents a distinct surface signature as an eastward

protrusion of relatively cold GPW from the EGC between 73°N and 74"N as described

above. The eastward protrusion of the 3°C isotherm from the EGC by the JMC is seen

even in the 4'C isotherm situated over the Mohn Ridge, already on the border of the

NAC. North of the JMC is an area of small temperature gradient which is the core of the

GSG.

The JOHAN HJORT/POLJARNIK 58 summer surface temperature

contour pattern in Figure 3.3 is quite similar to that in summer 1989 including the
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Figure 3.3 JOVIAN I-UORT/POIJARNLK 58 summer surface temperature ('C). The temperature
gradlient pattern is similar to BARTLETT 89 along the East Greenland Current. The Jan
Mayen Current (JMC) bows eastward just north of 74'N. The largest gradient of the
Norwegian Atlantic Current lies along the Mohn Ridge. Overall, temperatures are 1 to
2'C warmer than in 1989. The axis of the JMC is located about 100 km north of its
positon in 1989 (from Dietrich, 1969).
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eastward protrusio i of the 3°C isotherm, though it occurs about 120 km farther to the

north in 1958 than in 1989. However, surface temperatures in the Greenland Basin were

generally I to 2°C colder in summer 1989 than in summer 1958. This could be due to

an increase in the flow of cold GPW from the EGC which would allow less intrusion of

warmer NAtSW from the NAC into the Greenland Basin. The same increase in available

GPW could render conditions more favorable for winter sea ice formation, thus increasing

the quantity of melt water in the summer. Both events could cause the overall decrease

in surface temperatures and salinities observed in the basin in 1989.

b. Surface Salinity

The JMC is also well defined by contours of low surface salinity as

shown in Figure 3.4. The pattern of the 33.0 isohaline generally coincides with that of

the 3C isotherm (compar- with Figure 3.2). As with surface temperature, the

BARTLETT 89 surface salinity gradient is sharpest over the East Greenland Continental

Slope (in the EGG) just south of the GI-Z, broadens while bowing eastward south of

74'N, then tightens while rejoining the EGC prior to passage over th. JMFZ sill. 'he

contour pattern in the arL., of Stations 46 to 48 shows the saline NAtSW of the NAC

meeting the fresher GPW of the JMC as with the temperature pattern in Figure 3.2.

The JOHAN HJORT/POLJARNIK 58 summer data in Figure 3.5 also

mark the JMC as a tongue Li relatively low salinity surface water. Salinity ranges,

however, are higher by up to 3 PSU in 1958 over 1989 in both the JMC and GSG. As

mentioned above, the increase in surface salinity in 1958 is probably due to a reduced

flow of cold, fresh GPW in the EGC compsed with 1989.
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Figure 3.4 BARTLETT 89 surface salinity (PSU). The pattern of gradients is similar to that of the
surface temperature. The Jan Mayen Current is seen in eastward bowing of fresh
Greenland Polar Water from the East Greenland Current. The tightening gradient over
the Mohn Ridge indicates the fringe of the Norwegian Atlantic Current. Mean ice edge
shown as a heavy dashed line.
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2. Winter Surface Signature

"1he JM(. winter signature in surface properties is derived from the

METEOR/HUDSON 82 (Figures 3.6 and 3.7) and JOHAN HJORT/POLJARNIK 58

(Figures 3.8 and 3.9) data sets. Immediately apparent in winter is the marked eastward

shift in the gradients of surface properties, undoubtedly due to a widening of the East

Greenland ice pack (presumed to be bounded by the 0°C isotherm). This eastward

projection of the pack seems to coincide with the location of the JMC.

In 1958, apparently due to a lack of GPW as described earlier, the winter

temperatures in the region of the JMC were more than I°C warmer than in 1982. In

contrast, temperatures in the GSG were 0.1°C colder with the surface area of the gyre

considerably enlarged in 1958 over 1982. It does not appear that overall changes in

atmospheric temperatures could have caused this variation. Isolated areas of water colder

than 00C suggest limited sea ice coverage in 1958, whereas in 1982 sea ice coverage is

indicated in the form of an "odden" extending over nearly the entire Greenland Basin

(Parkinson et al., 1987, e.g. p.193). Thus, a dramatic increase in sea ice production

coincidental with a period of markedly lower salinity in 1982 compared with 1958 further

suggests a greater quantity of GPW was available in 1982. "Odden" is a Norwegian term

which describes the periodic eastward protrusions of the east Greenland ice pack in winter

in the area of the JMC. The extent and frequency of occurrence of the "odden" varies

inter-annually (Parkinson et al., 1987, e.g. p.195 ).
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Figure 3.6 METEOR/HUDSON 82 winter surface (5 m) potential temperature (°C). The large
eastward projection of the 00C isotherm indicates extensive sea ice coverage over most
of the Greenland Basin. A tongue of very cold Greenland Polar Water ( < -1.5C) along
the Jan Mayen Fracture Zone indicates the presence of the Jan Mayen Current (JMC).
The axis of the JMC is located about 120 km south of its position in 1989 (from
Kohermann and Lathje, 1989).
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Figure 3.7 METEOR/HUDSON 82 winter surface (5 m) salinity (PSU). The surface salinity pattern
is greatly similar to that of BARTLETTq 89 although 1982 salinities are slightly higher
(perhaps due to sampling at 5 m instead of the surface). A tongue of low-salinity
Greenland Polar Water along the Jan Mayen Fracture Zone indicates the presence of the
Jan Mayen Current (from Koltermnnn and Lithje, 1989).
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Figure 3.9 JOHAN HJORT/POLIARNIK 58 winter surface salinity (PSU). The surface salinity
pattern is similar to both winter 1982 arid summer 1989, though actual salinities are
markedly higher showing a greatly diminished presence of Greenland Polar Water. The
winter axis of the Jan Mayen Current is nearly collocated with that of summer 1958 (from
Dietrich, 1969).
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These figures also show a north-south translation of the east-west axis of the

JMC perturbation between data collection years. In 1982, the perturbation axis seems to

hug the JMFZ being located about 120 km south of its position in 1989. In 1958 the axis

is relatively stationary between seasons, thought it is located about 100 km north of its

position in 1989.

D. INTERMEDIATE WATER SIGNATURE

The analysis of the intermediate water structure of the Greenland Basin involves

several modes of data presentation which are useful owing to the dramatic differences in

temperature and mild differences in salinity generally found among water masses in the

high latitude regime.

1. Temperature Maximum

The contour pattern of the intermediate water temperature maximum (Tmax)

is useful in locating the JMC since there is such sharp contrast between the temperature

ranges of colder GArIW and warmer JMAtIW. Figure 3.10 shows that a large, eastward

meander of warm JMAtIW ( > 0°C) protrudes from the EGC south of 74°N in the

BARTLETT 89 data set. The 1989 data also show RAtIW to be as warm as 2°C though

only the seaward fringe of the EGC was sampled. The historical data of Bourke et al.

(1987) from the years 1981, 1984, and 1985 indicate RAtlW core temperatures in the

EGC may exceed 3°C. That this meander in the gradient of the warm intermediate waters

is located directly beneath and is similar in shape to the GPW meander in the surface

gradient indicates the flow of the water column is coordinated between these two levels.
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Figure 3.10 BARTLETT 89 contours of the intermediate temperature maximum (Tmax) (°C). The Jan
Mayen Current (JMC) is marked by a large eastward meander of Return Atlantic
Intermediate Water from the East Greenland Current which becomes Jan Mayen Atlantic
Intermediate Water within the JMC proper. The meander seems to occur in response to
the underlying bathymetry. The perturbatior at Station 6 (radius -50 kin) may have been
resolved as a large warm-core eddy had sampling progressed farther to the west. Mean
ice edge shown as a heavy dashed line.
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This inference of the flow together with a distinct and coordinated response to the

underlying bathymetry at both levels suggest the flow is significantly barotropic as is

expected in the region.

The perturbation of isopleths (radius 50 km) at Station 6 resembles either a

small meander in the flow of intermediate water or a large warm-core eddy that might

have been resolved had the survey continued farther west. According to Gascard et al.

(1988) large, barotropic eddies of WSC origin are a major mechanism in the recirculation

of AtW from the WSC to the EGC. These eddies, formed along the continental slope

between Norway and Spitsbergen, propagate westward topographically conserving

potential vorticity by following fracture zones. Such eddies are often observed as semi-

permanent features along the East Greenland Continental Slope just south of fractures

zones such as the GFZ. Interaction of these large eddies with the marginal ice zone

(MIZ) upon reaching the EGC produces various baroclinic mesoscale phenomena. These

resultant new eddies with a first baroclinic Rossby radius of deformation (Rd) of order

5 km cannot be resolved given the coarse station spacing of the data sets used herein.

Muench (1989) states that "wave-like" or "meander-like" features are frequently observed

in the MIZ, often in conjunction with eddies.

South of the JMC there is a second warm, intermediate water mass at

Stations 39, 40, and 48 distinguished by a Tmax of greater than 0.5°C. This water mass

appears to be an infusion from the southeast of NArIW from the NAC. Such a flow

consistently appears in general circulation schematics of the region (see Jnsson, 1989).
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North of the JMC lies the colder, intermediate water of the GSG. This GArlW is

characterized by a much colder Tmax of less than -0.5'C.

In Figure 3.11 the Tmax of warm JMAtIW in the heart of the JMC occurs at

a depth of less than 100 m while to the north in the GSG the Tmax of cold GArlW lies

at depths exceeding 150 m. Away from the influence of JMAtIW in the JMC and

NArIW at Stations 39, 40, and 48 the depth of Tmax exceeds 200 m.

In Figure 3.12 salinities at Tmax away from the influence of the EGC vary

minutely across the Greenland Basin from less than 34.85 in the heart of the JMC to

greater than 34.88 north and south of the JMC. This small horizontal variation in

salinities is indicative of overall weak density stratification beneath the more intense near-

surface salinity (density) gradient. The lower salinity at Tmax associated with JMAtlW

is due to a depression of the salinity by some vertical mixing with the large volume of

less saline GPW immediately above. Thus, the JMC may be traced by a signature of

slightly depressed salinities at Tmax.

2. Temperature Minimum

There is naturally a minimum temperature (Tmin) in the cold upper PW layer

between the surface warmed by insolation and the intermediate waters warmed by AtW

influence. In Figure 3.13 in the JMC the presence of the warm, buoyant JMAtlW causes

the overlying surface layer to be thin and thus Tmin to be shallow (approximately 25 m),

whereas in the absence of such warm intermediate waters in the GSG Tmin occurs at

greater depths (75 m or more). Thus, the depth of Tmin is another means by which to

locate the core of the JMC. Salinities at Tmin vary more than those at Tmax since Tmin
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Figure 3.11 BARTLETT 89 depth of the intermediate temperature maximum (Tmax) (m). The depth

of Tmax is less than 100 m in the heart of the Jan Mayen Current. Tmax occurs at
depths exceeding 150 m in the Greenland Sea Gyre. Mean ice edge shown as a heavy
dashed line.
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Figurc 3.13 BARTLETT 89 depth of the subsurface temperature minimum (Tmin) (in). A subsurface
temperature minimum occurs between the surface, warmed by insolation and the
intcrmediate waters warmed by Atlantic Water influence. In the Jan Mayen Current Tmin
occurs within a shallow subsurface core of moditied Greenland Polar Water, or Jan
Mayen Polar Water at < 50 m. In the Arctic Water of the Greenland Sea Gyre, *rmin
occurs slightly decper at < 75 m. Mean ice edge shown as a heavy dashed line.
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always occurs at shallower depths where the water column is more heavily stratified, thus

salinities at Tmin range from 34.1 in the JMPW of the JMC to 34.8 in the GArSW of the

GSG.

Contours of Tmin in Figure 3.14 reveal a north-south separation between the

warm and cold cores of the JMC of up to 100 km. A solid bar represents the axis of the

JMAtlW core derived from contours of Tmax in Figure 3.10 and the open bar represents

the axis of the near-surface JMPW core. The bars do not indicate the direction of flow,

but represent the east-west axis of the JMC meander with respect to each of the two core

waters for purposes of orientation. A similar portrayal appears in a general circulation

schematic by Koltermann and Lathje (1989). The source waters of these two water

masses are initially separated horizontally in the EGC by the EGPF with the GPW core

located up to 60 km westward of the RAtIW core (Bourke et al., 1987). This gives rise

to an apparent turning lag and southward displacement of the JMPW core relative to the

JMAtIW core in the JMC.

3. Salinity maximum

A final tracer useful in locating the JMC is the intermediate water salinity

maximum (Smax). Contours of Smax in Figure 3.15 present a pattern quite similar :o

that of Tmax including the perturbation previously noted in the EGC at Station 6. The

influence of the JMAtIW component of the JMC on the waters below is manifested in an

increase in Smax (-0.4 PSU greater) and a decrease in the depth of Smax (200 m

shallower) compared with these values in the GSG. Also noted in contours of Smax is
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Figure 3.14 BARTLETT 89 subsurface temperature minimum (Train) (°C). Ile orienLafion of the
cold core of the Ian Mayen Current (JMC) is recognized in contours of Train. A

separation of up to 100 km exists between the axis of the warm Jan Mayen Atlantic
Intermediate Water core of the JMC (solid bar derived from contours of Tmax in Figure
3.10) and axis of the cold Jan Mayen Polar.Water core (open bar). The parent waters are
similarly separated by the East Greenland Polar Front in the East Greenland Current.
Bars are not intended to indicate the direction of flow. Mean ice edge shown as a heavy
dashed line.
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Figure 3.15 BARTLETT 89 intermediate salinity maximum (Smax) (PSU). The Jan Mayen Current
is characterized by a salinity maximum which occurs at < 200 m. Smax is slightly less
(-0.0 4 PSU) in the Greenland Sea Gyre and occurs deeper at > 400 m. The pattern of
Smax is quite similar to that of Tmax including the perturbat'on at Station 6. Mean ice
edge shown as a heavy dashed line.
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the flow of saline NArIW into the Greenland Basin via a branch of the NAC from south

and east of Jan Mayen Island at Stations 39, 40, and 48.

The variation in salinity with depth becomes very small at intermediate depths,

thus Smax varies over a small range from < 34.88 in the GSG to > 34.92 in the JMC.

Smax in both the JMC and GSG regions occurs consistently near a mean 0, of

28.02 kg m -3 . Depths of Smax range from > 400 m in the GSG to < 200 m in the

JMC.

4. Comparison with Historical Intermediate Water Properties

The sparsity of historical data in the JMC region makes a detailed comparison

with the above analysis impractical. A general comparison, however, can be made of

properties at 100 m, a depth at which contour plots are commonly available and a depth

closely corresponding to the average depth of Tmax within the JMC. It should be noted

that though the METEOR/HUDSON 82 data set is contoured in potential temperature, in

situ temperatures are comparable at 100 dbar to an accuracy of better than 0.01C.

The historical data sets share three major features in common with the

BARTLETT 89 data (see Figures 3.16-23 following this chapter). First, the sharpest

gradients occur in the relatively warm, saline intermediate waters of the EGC. Second,

there is a large scale meander of warm, saline RAtIW that extends eastward from the

EGC, cooling somewhat with little notable dilution, to supply JMAtIW to the JMC.

Third, the GSG waters are colder and fresher than those of the JMC. Of particular

interest in 1982 is the appearance of a warm, saline meander-like feature -50 km in

radius collocated with the perturbation at BARTLETT 89 Station 6. The feature appears
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as a large warm core eddy in the surface temperature pattern (see Figure 3.6). Though

a tenuous conclusion from these limited data, the apparent semi-permanent nature of this

feature suggests bathymetric triggering which corroborates the observations of Gascard

et al. (1988) and Muench (1989).

A quantitative comparison of water properties at 100 m shows that throughout

the Greenland Basin temperatures and salinities at 100 m are higher (about I°C and

0.1 PSU) in summer 1958 than in 1989. In winter 1958 salinities are higher (by about

0.1 PSU) than in winter 1982. Temperatures in the JMC are also higher by about I°C in

winter 1958 than in winter 1982, though in the GSG temperatures are similar. Thus, as

mentioned earlier in the comparison of winter surface temperatures, inter-annual changes

in atmospheric temperatures do not seem a likely cause of the inter-annual differences

observed in temperatures at 100 m depth. Though temperatures were seasonally colder

(0.5 to I°C) in winter 1982 compared to summer 1989, salinities at 100 m depth are quite

similar.

The reduced temperatures and salinities noted in the 1982 data sets may be

related to a long term and wide spread climatic trend reported by Dickson et al. (1988).

They refer to a period of reduced salinities in the upper 500 to 800 m of the water

column in the northern North Atlantic from 1968 to 1982. They suggest that this low

salinity anomaly results either from a significant increase in sea ice production or an

anomalous northerly wind both of which occurred in the mid-1960's and both of which

could have caused excessive quantities of fresh water to be transmitted from the Arctic

Ocean, through the Nordic Seas, and into the North Atlantic sub-polar gyre. The low
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salinity anomaly was traced via a time series of observations from north of Iceland,

completely around the North Atlantic sub-polar gyre, and back to the Greenland Sea over

the fourteen year period. The reduced salinities in the Greenland Basin in 1982 may be

the result of the northerly return of the anomalous waters to this region or the

manifestation of a similar but shorter term and less wide spread event. Lazier (1980)

observed the anomaly described by Dickson et al. (1988) to persist for a period of 3 to

4 years at weather ship BRAVO in the Labrador Sea (1967-71). A similar phenomenon

occurred between 1910-1920 which corresponds to a period of significantly increased sea

ice formation. Additionally, J6nsson (1989) reports that large inter-annual fluctuations

in wind stress occur and can influence water mass structure in the Nordic Seas.

E. VERTICAL STRUCTURE

Thus far, the signature of the JMC has been recognized in horizontal sections of

various properties, specifically at surface and intermediate levels. Before discussing the

temperature versus salinity (T-S) characteristics at specific stations, a series of vertical

sections of temperature, salinity, and dissolved oxygen provide a vertically continuous

picture of the hydrography of the JMC via a network of closely spaced stations.

Figure 3.24 shows the orientation of these vertical sections. Transects A, B, C, D, and E

were constructed from BARTLETT 89 data so as to maintain orientation normal to the

axis of the JMC meander (see Figure 3.14 for axis), whereas Transects F and G take

slices parallel to this axis (i.e. radially to the JMC meander). These sections were
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Figure 3.24 Location of BARTLETT 89 Transects A through G. Transects A through E are vertical
sections which are oriented normal to the axis of the Jan Mayen Current (JMC) meander.
Transects F and G slice the meander parallel to its axis. These two views give a different
perspective of the eastward progression of properties and change in vertical structure of
the JMC.
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initially hand-contoured to verify the accuracy of the computer-contoured versions

presented herein. The sections are presented to a depth of 600 m to enable the maximum

vertical resolution of upper level features since no significant features occur below this

depth.

1. Sections of Temperature and Salinity

Transect A in Figures 3.25 and 3.26 represents the string of stations closest and

most nearly parallel to the EGC though still approximately 120 km seaward of the East

Greenland Continental Slope. Transect A faces Greenland with the EGC flow right to left

and the JMC flow normal to the section. Three basic regimes exist. The first, from

Stations 2 to 7, shows the previously mentioned perturbation in the intermediate waters

at Station 6. This feature is -50 km in radius and possesses an RAtlW core. The

perturbation is not apparent in the surface layers, but is capped by unperturbed ArW.

Internally the perturbation causes a depression of the -I°C isotherm to depths below

1000 m.
The second regime, from Stations 7 to 11, involves waters more typical of the

GSG. An upward bowing of the -I°C isotherm and essentially a downward bowing of

the 34.9 isohaline under the seasonal surface gradient show a very weakly stratified water

column, expected in the GSG.

The tnird regime is the JMC from Stations 11 to 16. Between Stations 11

and 12 RAtlW turns eastward followed by GPW either on or near the surface between

Stations 13 to 16. The RAtlW, now termed JMAtlW, is contained within one integral

core whereas the GPW, which becomes JMPW, is more filamental in nature illustrated
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by individual cells at Stations 13 and 16. Temperatures in the warm JMAtlW core

exceed I°C with salinities in excess of 34.8. Temperatures in the main filament of JMPW

at Station 16 are less than -0.5°C with salinities less than 34.5. The warm and cold cores

of the JMC (hereafter denoted by "W" and "C", respectively) are contained within the

upper 150 m of the water column, though the presence of JMAtIW causes a depression

of isotherms in the water column below, even to depths exceeding 1000 m. An

intermediate salinity maximum ( > 34.9) occus just below the main cores of both

JMAtlW and RAtlW.

Transect B in Figures 3.27 and 3.28, located about 100 km seaward of

Transect A, shows an eastward continuation of the partitioning of properties observed in

Transect A. The warm and cold cores of the JMC become more well defined in contours

of temperature. The cold core has coalesced into one filament with the innermost waters

now colder than -I°C, though its thermal center remains displaced southward of and

stepped up from the warm core. Salinities within the cold core remain less than 34.5,

while a salinity maximum ( > 34.9) persists beneath the warm core. North (to the right)

of Station 23 in Transect B the water mass structure is typical of the GSG with

moderately stratified GArSW extending from the surface to about 50 m followed by very

cold and weakly stratified GArIW through the remainder of the water column. The

significant variation in vertical structure between the JMC and GSG reveals two frontal

boundaries, one between the surface waters and one between the intermediate waters of

the two areas. The fronts are fairly shallow in depth and slope and are manifested in a

weak horizontal salinity gradient at the surface and a more pronounced horizontal
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temperature gradient in the intermediate waters. In Transect A across Stations 10 to 12

(about 125 km) or in Transect B across Stations 20 to 23 (about 200 km) the salinity

changes by up to 2 PSU in the upper 25 m while the temperature change is up to 1.5°C

in the layer from 50 to 400 m.

Ti.- fronts progressively weaken in subsequent Transects C through E (see

Figures 3.29-34 following this chapter). Transects C through E, in keeping orientation

normal to the axis of the JMC meander, become increasingly less parallel to the East

Greenland Continental Slope (sections are oriented southeast to northwest). In Transect C

the presence of NArIW from the NAC is noted at Station 40 by an additional cell of

warm intermediate water, a.so with an underlying salinity maximum. In Transect D an

infusion of warmer, more saline NAtSW, from the NAC, occurs at Station 47. The warm

core of the JMC is still detectible in Transect E at a great circle distance of approximately

500 km from Transect A. Transects F and G are oriented radially to the meander of the

JMC (see Figures 3.35-38 following this chapter). Transect F is located along the

southern fringe of the JMC and bisects the cold core of the JMC. Transect G, located

about 50 km farther to the north, though still south of the GSG, bisects the warm core of

the JMC.

2. Vertical Sections of Dissolved Oxygen

Vertical secions of dissolved oxygen are included to demonstrate a

relationship to temperature. Transects A through G present contuLr patterns which

generally mirror their respective temperature sections (see Figures 3.39-45 following this

chapter). Subsurface dissolved oxygen concentrations range from < 7.1 ml/ in the
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JMAtlW and RAtIW warm cores to > 8.0 ml/l in the JMPW cold core. Concentrations

in the GSG average about 7.4 ml!l. At the surface concentrations vary from > 8.0 mIl1

in areas of cold GPW to < 7.1 mil/ in areas of warm NAtSW influence from the NAC

(e.g., Station 47). The observed range of dissolved oxygen concentrations in the

BARTLETT" 89 data set is quite narrow; similarly the range of percent saturation values

(not shown). Such variation as does appear is inversely correlated with temperature and

probably is due to the effect of temperature on the solubility of oxygen in the source

waters rather than the age of the water as the intermediate waters of the Greenland Basin

are probably annually refreshed by both advection of recent surface waters and winter

convection of surface waters.

3. Comparison with Historical Sections

Summer Transects 12 and 14 of JOHAN HJORT/POLJARNIK 58 data located

on Figure 3.46 are nearly collocated with BARTLETT7 89 Transects A and B though

station spacing is considerably wider ( > 100 km versus < 50 km). The down-bowing of

isotherms combined with an intermediate salinity maximum at Stations 679 and 683

locate the core of the JMC (see Figures 3.47-50 following this chapter). Likewise, the

doming of isotherms and relatively isohaline conditions at Stations 669, 594, 665, and 598

mark the location of the GSG. GPW and sea ice are lacking in the upper water column.

Also, the temperature gradient monotonically decreases with depth showing no closed

isotherms of warmer or colder intermediate water parcels as in summer 1989.

METEOR/HUDSON 82 winter Transect 2 located on Figure 3.51 starts just

south of Jan Mayen Island and heads northeastward crossing the JMFZ to the east of the
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island. The vertical water mass structure in the vicinity of the JMFZ is quite similar to

that of the BARTLETT 89 data, though temperatures are markedly colder because the

observations were made in wintertime (see Figures 3.52 and 53 following this chapter).

The salinity maximum, however, is much deeper in 1982 ( > 1000 m) than in 1989. A

layer of NArlW extends northward over the JMFZ from the south and a hint of surface

warmth at Station 461 indicates NAtSW influence from the NAC.

Transects 32 and 34 compiled from JOHAN HJORT/POILJARNIK 58 winter

data located on Figure 3.54 are nearly collocated with the southern portions of

BARTLETT 89 Transects A and B. The arrangements of isotherms and isohalines are

quite similar to those of BARTLETT 89 sections including distinct filaments of RAtIW

between 100 and 200 m at Stations 343, 350, and 336 (see Figures 3.55-58 following this

chapter). Transect 34 shows doming of isotherms toward the GSG at Station 354. Nearly

isohaline conditions are predominant at depth with salinities slightly higher under the

JMC than in the GSG. Neither salinity nor temperature sections show any evidence of

sea ice or presence of GPW. Temperatures and salinities were higher in 1958 than in

1982.

F. T-S ANALYSIS

Plots of temperature versus salinity (T-S) on contours o." the density anomaly (Ft)

provide a means for detailed comparison of water mass characteristics and density

structure. This discussion begins with a series of figures that show the seasonal and inter-

annual progression of properties developed in previous sections. Potential temperatures
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(0) and thus ay are used in these plots to enable comparison with

METEOR/HUDSON 82 data which is only available in this form. Refer to Table 3.1 and

Figure 3.1 in Section B of this chapter for water mass descriptions as needed.

1. Overview of BARTLETT 89 O-S Characteristics and Historical

Comparison

Figure 3.59 is a 8-S plot of all BARTLETT 89 stations showing the full range

of potential temperatures and salinities observed across the Greenland Basin from the

surface to 1000 m depth. Data points (represented as dots) are extracted from the edited

CTD record according to a standard decimation schedule. The solid curve represents the

typical progression of properties with depth in the GSG. The dashed curves are typical

of stations within the JMC and indicate that, unlike the GSG, a variety of profiles may

exist depending on the properties of the warm and cold cores at each location i.e., their

distance from the origin of the JMC near the EGPF and continental shelf breaks. Each

curve leaves the surface through a relatively strong (negative) temperature and (positive)

salinity gradient to the first temperature minimum (Tmin) still located within the surface

layer at depths of 25-75 m. Tmin corresponds to the temperature extreme of either

surface ArW or PW depending on the profile. Subsequent to Tmin the temperature and

salinity gradients of both curves are positive until the intermediate temperature maximum

(Tmax) is reached at depths of 100-150 m. Tmax corresponds to the temperature extreme

of either intermediate ArW or AtW depending on the profile. Thereafter, the salinity

gradient is minimal and the vertical temperature gradient is dominant.
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Figure 3.59 O-S diagram derived from data at all 48 BARTLETT 89 stations on contours of a0. The
solid curve represents a typical station curve in the Greenland Sea Gyre (GSG). The
dashed curves are representative of station curves associated with the Jan Mayen Current
(JMC) which vary depending on their location with respect to its warm and cold cores.
Each curve passes through the surface pycnocline to the subsurface temperature minimum
(Tmin). The water column is considerably less stratified as each curve proceeds to the
intermediate temperature maximum (Tmax). The remainder of the water column is very
weakly stratified in salinity. The vertical temperature gradient of the lower water column,
however, varies considerably between the JMC and the GSG.
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Figure 3.60 is a -S plot of data from METEOR/HUDSON 82 stations

predominantly within the Greenland Basin, though a number are located in the Boreas

Basin (see Figure 2.2). It is evident from the data point groupings at -1.8°C/34.1 and

-1.8°C/34.7 that despite winter temperatures in 1982 being colder by at least 0.5°C than

in 1989, PW and ArW in the surface layer in 1982 possess nearly identical salinities to

those in summer 1989. The presence of warm, saline ( > 3°C and > 35.0) surface water

in 1982 is probably due to stations in the sample being located within the WSC.

Figures 3.61 and 3.62 present -S properties of JOHAN

HJORT/POLJARNIK 58 summer and winter data (respectively) acquired at stations

located within the area of the BARTLETT 89 survey. Immediately evident is the overall

weaker salinity stratification due to a lack of low salinity surface water compared with

1982 and 1989. Also, the NAC/WSC has intruded into the area of the BARTLETT 89

station array, as indicated by the presence of warm water with salinities > 35.0.

An analysis of the waters at 1000 m depth (figure not shown) concludes that

no appreciable difference in temperatures or salinities at this depth occurs among all four

data sets. Thus, the low salinity anomaly of the upper water column (Dickson et al.,

1988) does not appear to have affected the mid-water column.

2. T-S Analysis of BARTLETT 89 data

Figure 3.63a is a T-S plot of a small group of stations selected to represent

each water mass while avoiding clutter from excessive data points. Extremely high

temperatures and low salinities have also been eliminated to avoid clutter from near-

surface data points (< 25 m). Data point groupings denoted by letters "A" through "H"
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Figure 3.60 O-S diagram of METEOR/HlUDSON 82 data from stations in the Greenland and Boreas

basins on contours of a,. The salinity saaification of the upper .vater column due to
a notable presence of cold, fresh Greenland Polar Water bears resemblance to the
BARTLETT 89 diagram. Warm surface waters of salinity > 35 indicate the presence of
Norwegian Atlantic Suiface Water at stations in the Boreas Basin near the West
Spitsbcrgen Current (from Ko1hermnann and Uihje, 1989).
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Figure 3.61 O-S diagram derived from JOHlAN HJORT/PIOLJARNIK 58 summer data from stations
located entirely within the Greenland Basin on contours of ar. Very little low-density
Greenland Polar Water is present and beneath the surface gradient, the major portion of
the water column is very wcakly stratified. Warm, saline Norwegian Atlantic Surface
Water has intruded into the Greenland Basin from the Norwegian Atlantic and West
Spitsbergen currents.
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correspond to observed temperature extremes or core waters within each water mass. The

temperature and salinity limits of water masses described in Section B of this chapter are

shown in companion Figure 3.63b with the exception of N~tSW which is too saline to

appear.

Beginning with the sufface waters of the GSG, A shows the core properties

of the GArSW layer (properties at Tmin). Between the surface and Tmin at A the salinity

gradient is weak and a strong seasonal temperature gradient predominates represented by

a &cy, of about 0.8 kg m"3 (see Figure 3.59). In contrast, the surface gradient of the JMC

leading to Tmin at B, C, and D is due to both temperature and salinity stratification a,.d

represents a &(T of up to 3.0 kg m3 (see Figure 3.59). Locations B, C, and D represent

a different variant of JMPW illustrating the filamental nature of this layer as discussed

in previous sections.

The intermediate portion of the water column in the GSG is represented by the

T-S properties of GArIW at H. With reference to Tmin salinity stratification continues

to weaken comi :d with the surface layer and the temperature gradient markedly

diminishes. The maximum change in o, from A to H is of order 0.1 kg m -3. The

intermediate water masses of the JMC again provide sharp contrast to those of the GSG.

Locations F and G show the core properties (properties at Tmax) of JMAtIW. Significant

temperature and salinity gradients persist into the intermediate waters as indicated by the

paths of T-S curves between JMPW (Tmin at B, C, and D) and JMAtIW (Tmax at F

and G) where A,, can be as great as 0.4 kg m3 . Curves passing though E represent
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properties of RAtlW at stations in the EGC seaward of the EGPF and thus do not show

any PW properties at the surface (recall PW is located shelfward of the EGPF).

After passing through E, F, G, and H all T-S curves demonstrate a marked

decrease in the vertical salinity gradient. Figure 3.64 is an enlargement of the T-S curves

in Figure 3 63a corresponding to properties in the lower 800 m of each station profile.

The curves at stations in the JMC are substantially warmer and more saline (by about

0.5'C and 0.1 PSU) compared with those in the GSG. Also, from 200 to 1000 m depth

c, varies up to 0.6 kg m- in the JMC compared to 0.3 kg m3 over this depth range in the

GSG. The differences in the vertical density gradients between the JMC and the GSG

are largely a function of temperature in this depth range.

G. SUMMARY

The JMC presents a signature marked by moderate salinity stratification and strong

temperature stratification throughout the upper 1000 m of the water column. This

contrasts sharply with the structure of the GSG which is very weakly stratified aside from

a thin surface gradient. At the surface, the JMC is recognized by a tongue of GPW which

extends eastward from the EGC. PW continues to be associated with the JMC in the

subsurface layer, though it appears as filaments of JMPW. The most notable feature of

the BARTLETT 89 data set, however, is the eastward protrusion of JMAtIW, displaced

-1(X) km northward of the JMPW tongue. The patterns of surface and intermediate

properties indicate the JMC may be an anticyclonic meander in the seaward portion of

the EGC rather than solely a continuous eastward (cyclonic) flow constituting the
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southern limb of the GSG. These patterns also indicate that flow may be barotropic since

all show a correlation to the bathymetry of the JMFZ. Evidence to support these

contentions is found in the trajectories of Lagrangian drifters (Gascard and Richez, 1989)

and the results of a general circulation model by Legutke (1989) which appear in the

following chapter on circulation.

Clearly evident from a comparison of BARTLETT 89 data with historical data is

that the inter-annual variation of properties in the upper water column of the Greenland

Basin is at least as pronounced as the seasonal signal. The axis of the JMC meander is

not stationary and appears to move 0(100 km) north and south of its 1989 position.

Also, there are temperature and salinity variations in the upper water column between the

data sets. These fluctuations are likely due to variations in the quantity of GPW available

to the Greenland Basin.
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Figure 3.17 BARTLETT 89 100) m salinity (PS13). Salinities are slightly higher at this level in thc
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heavy dashed line.
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Figure 3.19 JOHIAN HJORTIPOLJARNIK 58 100 m salinities in summer (PSU). The salinity pattern
is similar to that in summer 1989, though actual salinities are higher by about 0.1 PSU.
Observed salinities did not reach 35.0 at any depth in 1989 (from Dieirich, 1969).
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Figure 3.20 MIETE-OR/HIUDSON 82 100 m potential temperatures in winter ('C). The 100 m
temperature pattern is similar to those of the summer data sets though se-asonally colder.
A large meander in the isothcrms south of the Greenland Fracture Zone corresponds to
closed isotherms around a warm water mass in the winter 1982 surface temperature
pattcrn. That this feature is collocated wit' h the smaller perturbation at BARTLETT
Station 6 suggests they are bathymnetically triggered (from Kohermiann and Liihje. 1989).
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Figure 3.21 MIETEOR/HUDSON 82 1(X) m salinity (PSUJ). The 100 m salinity pattern is quite similar
to those of the sumnmer data sets. The actual range of salinities is close to that in summer
1989; likewise salinlues are about 0.1 PSU lower than in summer 1958 (from Koltermann
and L61hje. 1989).
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Figure 3.23 JOHIAN IIUORT/POLJARNIK 58 100 m salinity (PSU). Salinities across the Greenland
Basin are up to 0. 1 PSU higher in winter 1958 than in either winter 1982 or summer 1989
(from Dietrich, 1969).
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IV. CIRCULATION AND TRANSPORTS

The water column in the Greenland-Norwegian Sea is generally considered to be

weakly stratified except for a shallow seasonal surface gradient that may extend as deep

as 100 m. Flow in areas with weak vertical gradients is observed to have a substantial

barotropic component. Such structure of the water column is illustrated by the results of

the BARTLETF 89 survey. Thus, flows in the Greenland Basin are expected to be

significantly barotropic and demonstrate a response to underlying bathymetric features.

Mluench (1990h) indicates that the EGC is significantly barotropic. Foldvik et al. (1988),

based on year-long current meter measurements, consider the EGC to be at least half

barotropic. In the absence of seasonal fluctuations in this flow, they deduce that the EGC

is driven by differences in sea level between the Arctic and Atlantic Oceans rather than

the result of a wind-driven gvre system in the Greenlaiid Sea, though Aagaard (1970)

shows that local wind stress is capable of producing appropriate transports in the basin.

In a study of wind stress curl in the region from 1955-87 J 6&son (1989) also discounts

wind stress as a major driving force of the large scale flow except possibly in the

recirculation region south of Fram Strait. Additionally, Gascard et al. (1988) describe

the EGC as a narrow, baroclinically stable, and largely buoyancy-driven flow.

A. BAROCLINIC FLOW

BARTLETT 89 data are limited to a geostrophic analysis of the baroclinic

cLOnponent of flow in the upper 1(0) m. Notable similarities exist, however, between
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the BARTLETT 89 dynamic height pattern and the trajectories of Lagrangian drifters as

well as the results of a numerical model, both to be discussed in the following section.

Thus, the baroclinic velocity field seems to resemble the total flow field in direction.

The surface dynamic height pattern of September 1989 is presented in Figure 4.1.

Contours are in dynamic centimeters at the surface referenced to 1000 dbar and the

arrows represent frictionless, baroclinic flow. The height gradient is mild in general and

is strongest in the EGC and where the JMC branches eastward from the EGC between

Stations 10 and 12. The ma ,imum gradient at this point, about 8 dyn cm over 100 km,

produces a maximum baroclinic velocity of about 0.07 m s-'. Most interesting in the

dynamic height pattern is that the JMC appears partly as an anticyclonic meander in the

EGC. About half of the dynamic height contours (hereafter referred to as flow lines)

passing eastward through Transect A (Stations 2 to 16) loop back westward to rejoin the

EGC as the, encounter the JMFZ rise. The other half of the flow lines enter the GSG

circulation or cross the Mohn Ridge toward the NAC/WSC.

The dynamic height pattern appears to be heavily correlated with the pattern of the

intermediate temperature maximum in Figure 3.10 of the previous chapter. The alignment

of these patterns and their relationship with the undeilying bathymetry suggests the flow

of the JNIC meander is significantly barotropic. It is interesting that the baroclinic

circulation in the upper water column seems to be well correlated with the barotropic

component of flow. Muench (1990b) states mat baroclinic features are often observed

embedded in the largely barotropic, EGC/EGPF system. Furthermore, Hopkins (1988)

explains that while the dynamic mechanisms are not known, eastward extensions of EGC
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Figure 4.1 BARTLETT 89 dynamic height at the surface referenced to 1000 dbar (dyn cm). The
geopotential pattern reveals that the baroclinic component of the Jan Mayen Current is
partly an anticyclonic meander in the seaward portion of the East Greenland Current. The
remainder of the flow proceeds eastward toward the Norwegian Atlantic Current or

becomes incorporated in the Greenland Sea Gyre. Arrows indicate the direction of
frictionless baroclinic flow. Mean ice edge shown as a heavy dashed line.
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waters such as the JMC meander are assumed to be due to the interaction of the

barotropic flow field with the underlying bathymetry.

Historical dynamic height contour patterns share the above features. The

METEOR/HUDSON 82 dynamic height pattern in Figure 4.2 shows a closed GSG

circulation as well as more detail farther to the east to include the flow in the seaward

fringe of the NAC/WSC. The lack of stations in the area of the JMC, however, prevents

a depiction of the flow there. The JOHAN HJORT/POLJARNIK 58 summer data in

Figure 4.3 also shows a closed GSG circulation, as well as the presence of an anticyclonic

meander in the EGC at 720 30'N which bears strong resemblance to the BARTLETT 89

JMC circulation pattern.

B. TOTAl FLOW

1. Lagrangian Drifters

Three sea ice floe drift trajectories tracked by ARGOS positioning beacons

during ARCTEMIZ 89 are utilized in this study to estimate the total flow field in the

Greenland Basin (Gascard and Richez, 1989). These data were generously made

available by J.-C. Gascard (personal communication). It can reasonably be assumed that

these ice floes are reasonably unaffected by local winds and thus represent the total flow

field, especially since the floes are initially located well within the pack where wind stress

and wind drag due to roughness of the floe surface are least (Muench, 1989). Internal ice

stress is also assumed not to significantly affect the drift of these floes. Figure 4.4 shows
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portions of three ice floe drift tracks during the time frame of late May to mid-August

1989.

Each of the three floes (numbered 6113, 6114, and 6117) initially turns eastward

and then executes an anticyclonic loop to proceed toward the EGC north of the JMFZ

rise. Each of the three drift tracks compares remarkably well with the BARTLETT 89

dynamic height flow pattern given a moderate meridional transiation of the JMC meander

axis of about 75 km over the time period from June to September 1989 (up to a four

month gap between observations). The floes propagate at an approximate average speed

of > 0.2 m s' in contrast to the maximum BARTLETT 89 baroclinic velocities in the

area of 0.7 m s', thus a large barotropic component is evident.

A correlation appears to exist between the relative, lateral positioning of the floe

in the EGC north of 74°N and the position at which it turns eastward into the JMC.

Floe 6117 located nearer the seaward edge of the EGC turned much earlier (around 730N)

than the two floes located farther westward overlying the east Greenland shelf (between

710 30' to 72"N). It is interesting to note that as the initial positions of the floes in the

EGC are similar to the relative positions of the GPW and RAtIW cores straddling the

EGPF. The inboard floes (6113 and 6114) demonstrate an apparent delay in turning

eastward as does the JMPW core compared with the JMAtIW core of the JMC in the

previous chapter (see Figure 3.14). Thus, similar dynamic processes may be responsible

in each case.
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2. A Numerical Model

A numerical investigation of the circulation of the Greenland and Norwegian

seas by Legutke (1989) sheds additional light on the total flow field in the JMC region.

This general circulation, primitive equation model developed at the University of

Hamburg achieves 20 km horizontal resolution in 12 vertical layers and resolves bottom

topographic features, though eddies are not resolved since the radius of deformation (Rd)

is of order 5 km at this latitude. Initial stratification and forcing functions are derived

from climatological annual mean data. Model fields are subsequently forced by historical

wind data over a 2.5 year period utilizing a backward time stepping scheme. Total

volume exchanges through open boundaries are deduced from observations and are

constant in time.

Model results in the JMC region were generously made available by S. Legutke

(personal communication). The streamlines in Figure 4.5 are derived from the model

results and indicate the direction of the total flow field in the upper 300 m of the water

column. Flow spe .ds vary from 14 to 0.2 m s' in the EGC to < 0.1 m s- in the JMC.

Model velocities in the EGC are reasonably close to observed ice floe velocities of order

0.2 m s'. The model circulation pattern is also quite similar to the BARTLETT 89

observed baroclinic circulation in Figure 4.1. Of interest in this similarity is the

manifestation of the JMC partly as an anticyclonic meander in the seaward portion of the

EGC. A set of vertical velocity sections collocated with BARTLETT 89 Transects A

and B show little vertical shear in the flow and point to a considerable barotropic

component. Analysis of the model results clearly indicates that the axis of the JMC warm
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Figure 4.5 Flow streamlines of a general circulation model at the University of Hamburg. The model
is iritialized with mean climatological data and subsequently run for 2.5 years with
6-hourly winds. Flows through open boundaries are derived from observation and are
constant in time. The Jan Mayen Current is shown as an anticyclonic meander in the East
Greenland Current with secondary circulations to the Greenland Sea Gyre and Norwegian
Atlantic Current (courtesy of S. Legutke, personal communication).
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and cold cores are laterally separated (warm core to the north) as observed in the

BARTLETT 89 data.

C. TRANSPORTS

Transports of fresh water and heat by the JMC and its total volume flow from the

surface to 1000 m depth are calculated from BARTLETT 89 data based on the baroclinic

velocity field. Baroclinic velocities are computed in vertical sections along each of the

five southwest-northeast legs as well as around the perimeter of the BARTLETT 89

survey. Due to the prevalent, weak dynamic height gradient, velocities away from the

EGC are typically < 0.02 m s1. The core of baroclinic flow appears to be confined to

the upper 100 m of the water column.

1. Total Volume Transport

Foldvik et al. (1988) estimate the net southward volume transport by the EGC

above 700 m to be 3 Sv with mean speeds of 0.1-0.3 m s' based on year long current

meter measurements. Bourke et al. (1988) give an estimate of 3.1 Sv for the baroclinic

transport of the EGC. Thus the net total southward transport of the EGC is estimated to

be of order 3-4 Sv.

BARTLETT 89 data calculations yield an estimated total baroclinic flow of

nearly 2 Sv for the JMC as it flows eastward through Transect A. Slightly less than half

of the flow exits the Greenland Basin toward the NAC and about 5 % enters the GSG

circulation. Approximately 1 Sv constitutes the return flow of the JMC meander which

rejoins the EGC as it crosses the JMFZ sill. These flow rates appear to be proportionate
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to the model transport3 of S. Legutke (personal communication), though the flow through

Transect A is 3 to 4 Sv greater in the model. The disparity in actual transports is

undoubtedly due to an unknown barotropic velocity component in the BARTLETT 89

survey.

2. Transport of Fresh Water and Heat

The fresh water budget is of critical importance to vertical circulation at high

latitude centers of convection such as the GSG. According to Aagaard and Carmack

(1989), if the surface fresh water excess is too great, a convective region may be capped

causing convection to cease. Below a certain salinity, even if surface waters are cooled

to the freezing point, they remain too buoyaia to penetrate the intermediate watteib.

Aagaard and Carmack (1989) contend, however, that a slight surface salinity gradient is

optimum, i.e., a minimum degree of buoyancy must be present, to ensure that cooling at

the surface is sufficient to take advantage of the thermobaric effects of compressibility

at low temperatures which enhance penetration of the lower water column.

The liquid fresh water transport by the JMC into the BARTLETT 89 survey

area is calculated from the baroclinic flow field using a reference salinity for the Nordic

Seas of 34.93 (after Aagaard and Carmack, 1989). Approximately 29 x 106 kg s' of

fresh water enters the survey area via the JMC meander while 14 x 106 kg s' exits to the

south still within the meander, 4 x 106 kg s-' exits to the east toward the NAC/WSC, and

11 x 106 kg s-' remain in the survey area (Figure 4.6). Thus, nearly one half of the fresh

water that leaves the EGC within the JMC meander also returns to the EGC via the

meander while one third is retained in the basin. A fresh water excess of 340 km3 y
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Figure 4.6 Schematic of baroclinic total volume flow rate, volume flow rate of liquid fresh water,
and heat advection rate in/out of the BART7ET 89 survey area. Frcsh water volume

estimated based on a reference salinity of 34.93 (Aagaard and Cartack, 1988).
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results for the 240,000 km2 area covered by the BARTLET- 89 survey. This equates to

a 1.4 m layer of fresh water per year which must be neutralized by a combination of sea

ice formation and convective mixing to maintain a balance in the region. It is assumed

that the increased transport of fresh water that would be realized if the uncertain

barotropic contribution (expected to be of the order of the baroclinic contribution) were

to be considered is roughly balanced by the seasonal fluctuations of both the magnitude

of the total flow field and the quantity of available liquid fresh water.

Aagaard and Carmack (1989) estimate the liquid fresh water content of the

GSG alone to be 77 km3 over an area of 135,000 km 2 or 0.57 m of fresh water which is

replenished annually. They note that if the effects of extreme winter cooling on surface

density stratification are taken into account, only 0.29 m of annual ice formation is

required to provide a sufficient increase in surface salinity to cause overturn. In

comparison, the BARTLETT 89 estimate of 1.4 m seems reasonable since the estimate

of Aagaard and Carmack (1989) solely involves the GSG which is considerably more

saline in the upper water column than the remainder of the 1989 survey area and thus

would store less fresh water. Aagaard and Carmack (i989) also estimate that annually,

1160 km3 of fresh water flows southward from the Arctic Ocean in the EGC. Thus by

the BARTLETT 89 calculation roughly one third of the total annually available quantity

of liquid fresh water in the EGC cycles through the Greenland Basin within the JMC

meander. Roughly one fourth of this liquid fresh water volume annually available in the

EGC is retained within the survey area.
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Calculations of the heat transport through the BARTLETT 89 survey area

utilizing a reference temperature of -1.8'C indicate a net loss at a rate of 1 x 10' W which

is essentially indistinguishable from zero considering the size of the survey area. Thus,

an advective heat balance seemed to exist at the time of the survey.
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V. DEEP WATER

A. INTRODUCTION

Current thinking holds that deep water circulation within the basins of the

Greenland and Norvegian seas and the Eurasian Basin of the Arctic Ocean is inter-

connected and semi-closed. The general deep circulation may be considered to begin wVith

a flow out of the Eurasian Basin on the west side of Fram Strait which continues

southward along the east Greenland continental slope and circulates cyclonically around

the Boreas and Greenland basin system. Some of this flow branches into the Lofoten and

Norwegian basins while the remainder continues in a deep cyclonic gyre eventually

returning to the Eurasian Basin via the east side of Fram Strait (Jnsson. 1989). The

three basic deep water masses within this circulation are Eurasian Basin Deep Water

(EBDW) originally referred to as Arctic Ocean Deep Water (AODW), Greenland Sea

Deep Water (GSDW), and Norwegian Sea Deep Water (NSDW). The names connote

their predominant sea or basins of residence. Important external processes that provide

input to this system include brine formation on the shelf regions surrounding the Eurasian

Basin and ventilation via convection in the GSG.

Swifi et al. (1983) observed AODW to be more saline than either GSDW or NSDW

which enter the Eurasian Basin through Fram Strait from the Greenland and Norwegian

seas. Based on radionuclide distributions, they deduce that the increase in salinity is due

to the addition of briie formed in the northern Barents and other surrounding shelf
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regions. AODW is referred to as EBDW by Aagaard et al. (1985) since it was observed

to be confined to that basin by the Lomonosov Ridge. They also postulate that this

EBDW is formed when brine from the peripheral arctic shelves mixes with NSDW which

enters the Eurasian Basin via the east side of Fram Strait. They observed that the

relatively warm, saline EBDW, in turn, exits the Eurasian Basin along the east Greenland

continental slope.

GSDW has been hypothesized to form via several processes, the two principal ones

being small-scale convective chimneys first observed in the Weddell Sea and modeled by

Killworth (1979) who states this process could apply to the GSG; and double diffusive

cooling of a subsurface Atlantic Water layer proposed by Carmack and Aagaard (1973).

Rudels et al. (1989) recently observed a convective event which attained a depth of

1250 m during the 1988 cruise of VALDIVIA. In explanation they present a complex,

small-scale process of overturn events which proceed in step-wise fashion to depths

dependent on sea ice conditions and the stratification of the upper water column. This

process yields GSDW which bears the relatively cold, fresh signature of the surface

waters at the time of formation.

Smethie et al. (1988), based on Chlorofluoromethane (CFM) distributions, collate

previous findings into a logical scheme of deep water flow between the Eurasian Basin

and the Greenland and Norwegian seas and offer an explanation of the process which

yields NSDW. CFM, a water mass tracer which is introduced at the surface, has

recently been detected in larger amounts than in previous years, thus providing a means

of deep water age determination.
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Smethie et al. (1988) show that EBDW exits the Eurasian Basin where the pressure

compensated density anomaly referenced to 2000 dbar (a2) is about 37.46 kg m3 . This

density surface is coincident with the sill depth at Fram Strait and is also that occupied

by GSDW. The southward isopycnal flow of EBDW along the east Greenland

continental slope is unobstructed until it encounters the JMFZ where it is forced eastward

to circulate cyclonically around the southern periphery of the Greenland Basin.

During this southward journey in the Greenland Sea they postulate that EBDW and

GSDW mix isopycnally in equal parts producing the uniform water mass, new NSDW,

distinguishable from old NSDW only by a high concentration of CFM supplied by the

GSDW component. Some new NSDW flows eastward through gaps in the southern

Mohn Ridge system into the Norwegian and Lofoten basins and some flows northward

through the Boreas Basin. Eventually old NSDW, distinguishable from new NSDW

only by a lower concentration of CFM, leaves the northern Lofoten Basin to join the

northward flow of new NSDW, some of which recirculates southward under the EGC and

some of which flows back into the Eurasian Basin with smaller quantities of GSDW via

the east side of Fram Strait.

Swift and Koltermann (1988) present evidence in the form of hydrographic and

current meter data that the inflow of new NSDW to the Norwegian and Lofoten basins

occurs through the trough associated with the JMFZ. Deep water properties in the

Greenland and Lofoten basins during the BARTLETT 89 survey seem to support the

contention of Swift and Kolermann (1988).
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B. ANALYSIS OF BARTLETT 89 DEEP WATER DATA

The three deep water masses which are present in the Greenland Basin are listed

in Table 5.1. Potential temperatures and salinities for these waters are presented from

various data sources for comparison. With the exception of values from Hopkins (1988),

which are summarized from recent literature, values derived from actual data sets are an

arithmetic mean of measurements at or below 2500 m depth, a regime where the deep

waters are relatively homogeneous (look ahead to Figure 5.3). The population size and

standard deviation are also included.

The BARTLETT 89 data are extracted from the final data report of the Ocean Data

Facility (ODF) at Scripps Institution of Oceanography (SIC). Temperatures are from

calibrated CTD measurements and salinities are determined from bottle samples analyzed

on an Autosal. Data from Stations 2, 11, and 21 are used to determine values for GSDW

(see Figure 2.1 for station locations). Data from HAAKON MOSBY 89 Station 32,

which is collocated with the Greenland Sea Project inter-calibration site, is used to

determine values for NSDW (see Figure 2.1). BARTLETT 89 Stations 40 and 48 are not

used in this determination of NSDW since at these locations NSDW occurs in areas where

the vertical density gradient is too great for an accurate assessment of deep water core

properties. The HAAKON MOSBY Station 32 data are extracted from the ODF

preliminary data report though is considered comparable to BARTLETT 89 data in that

both CTD instruments were calibrated in the same time frame at SIO. These data were

graciously made available by A. Foldvik (personal communication). JOHAN HJORT 58

values are discussed in the following section.
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Table 5.1 Deep Water Masses of the Greenland Basin. The potential temperatures
and salinities represent mean values at or below 2500 m ± standard
deviation from the indicated data set. Population size is in parens. Values
from Hopkins (1988) represent values summarized from recent literature.

Water Mass

Data Source
Greenland Norwegian Eurasian
Sea Deep Sea Deep Basin
Water Water Deep

(GSDW) (NSDW) Water
(EBDW)

-1.200 ±.014
BARTLETT 89 34.896 ±.001

(12)

-1.045 ±.004
IIAAKON 34.907 ±.001
MOSBY 89 (18)

JOHAN HJORT 58 -1.21 ±.03 -1.05 ±.01
Summer (7) (3)

JOHAN IIJORT 58 -1.18 ±.02 -1.04 ±.01
Winter (3) (2)

Hopkins (1988) -1.25 -1.05 -0.80
34.89 34.91 34.93
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The 8-S curves for each of the five BARTLETT 89 stations deeper than 1000 m

plus HAAKON MOSBY 89 Station 32 are shown in Figure 5.1. Stations 2, 11, and 21

in the northern and central Greenland Basin are relatively cold and fresh compared to

Station 48 and H. MOSBY Station 32 located within the Lofoten Basin which are slightly

warmer (by > 0.1°C) and saltier (by > 0.05 PSU). Station 40 is located in 2200 m of

water on the west side of the JMFZ trough which leads to the Lofoten Basin. This station

shares characteristics of both basins starting warm and salty at 1000 m then becoming

cold and fresh near the bottom.

Smethie et al. (1988) observe EBDW to occupy a level where Y2 = 37.46 kg m3

which corresponds to a depth in the Eurasian Basin of 2400-2500 m or approximately the

2600 m sill depth at Fram Strait. In the Greenland Basin this density surface occurs at

a depth of 1500-2000 m, above the denser GSDW. Figure 5.2 shows E-S characteristics

of station data within the band where Y2 = 37.45 to 37.46 kg m3 . A steady progression

of properties occurs along this isopycnal band from Stations 2 and 11 in the northwestern

Greenland Basin to Station 21 in the central basin to Stations 40 and 48 separated by the

JMFZ trough and H. MOSBY Station 32 in the central Lofoten Basin. The steady

increase in temperature and salinity across these stations is assumed to be due to the

isopycnal influx of EBDW circulating with GSDW initially southward along the east

Greenland continental slope, thence cyclonically along the JMFZ, and eventually

northward along the west side of the Mohn Ridge back to the Boreas Basin. Thus, the

mixing of EBDW and GSDW seems to occur along the western and southern periphery

of the deep cyclonic circulation in the Greenland-Boreas basin system.
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Figure 5.1 8-S diagram of BARTLET 89 (plus H. MOSBY 89 Station 32) deep station bottle data
(1000-3500 m) on contours of a, (ref. pressure 0 dbar). 8-S curves of Stations 2, 11,
and 21 in the Greenland Sea Deep Water of the north and central Greenland Basin are
characteristically colder, and fresher than those of Stations 48 and H. MOSBY Station 32
in the Norwegian Sea Deep Water of the Lofoten Basin. Station 40 located in the
Greenland Basin at the mouth of the Jan Mayen Fracture Zone trough shares
characteristics of both water masses. These curves enable comparison of potential
temperatures and salinities between water masses and visualization of the differences in
vertical gradients between the basins, however, density comparison of the deep waters in
inaccurate with pressure referenced to the surface. See Table 5.1 for water mass
descriptions (H. MOSBY data courtesy of A. Foldvik, personal communication).
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Figure 5.2 02-S diagram of BARTLETT 89 (plus H. MOSBY 89 Station 32) deep station bottle data
(02 = 37.45 to 37.46 kg m3) (ref. pressure 2000 dbar). On this pressure-compensated
density surface is seen the progressive isopycnal mixing southeastward across the
Greenland Basin of warm, saline Eurasian Basin Deep Water and cold, fresh Greenland

Sea Deep Water to form Norwegian Sea Deep Water. The process is complete at Station
40 located within the Greenland Basin. This progression corroborates the theory of Swift
and Koltermann (1988). Depth range of this density surface in given for each station.
Refer to Table 5.1 for water mass descriptions (H. MOSBY data courtesy of A. Foldvik,
personal communication).
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The progression of properties between these stations illustrated in Figure 5.2 shows

that isopycnal mixing of EBDW and GSDW to form NSDW is already complete at

Station 40 located on the west side of the Mohn Ridge at the mouth of the JMFZ trough.

Beginning at Stations 2 and 11, properties are characteristic of GSDW and occur at

1500-2000 m depth. At Station 21 properties (still at 1500-2000 m) are mid-way between

those at Stations 2 and II and those at Stations 40, 48 and H. MOSBY Station 32.

Finally, properties at the latter group of stations share the characteristics of NSDW. In

this region the depth of the density surface cascades from 1500-2000 m at Station 40 to

2000-2500 m at Station 48 to 2500-3500 m at H. MOSBY Station 32. The theory of

Swift and Koltermann (1988) seems to be demonstrated by these limited observations.

On a 03 plane, Figure 5.3 shows that properties are relatively homogeneous at

Stations 2, 11, 21, 48, and H. MOSBY Station 32 in the near-bottom or core deep waters

which lie beneath the isopycnal mixing described above. Station 40 terminates at the

bottom at about 2100 m and is not shown. In the Greenland Basin at Stations 2, 11, and

21 core GSDW occurs in the band where 03 = 41.99 to 42.00 kg m3 . At Station 48 and

H. MOSBY Station 32 in the Lofoten Basin core NSDW is less dense and occurs in the

band where 03 = 41.98 to 41.99 kg m3 . The homogeneous waters at Station 48 lie in a

deep depression and are slightly denser than at the same depth at H. MOSBY Station 32

indicating GSDW influence. NSDW lies above this depth at Station 48, still in the final

stages of mixing.
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Figure 5.3 8,-S diagram of BARTLETT 89 (plus H. MOSBY 89 Station 32) deep station bottle data
below 2500 m (a, = 41.98 t.0 42.00 kg m-') (ref. pressure 3000 dbar). The near-bottom
waters are most comparable on this press ure-compensated density surface. The vertical
density gradient at each station is minimal at this level. The core Greenland Sea Deep
Water of the Greenland Basin is significantly denser than the core Norwegian Sea Deep
Water of the Lofoten Basin. Refer to Table 5.1 for water mass descriptions (H. MOSBY
data courtesy of A. Foidvik. personal comiunication).
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Concerning the concept of a bottom water, since the vertical density gradient is

smooth in the deep waters which overlie the core NSDW in the Lofoten Basin, there are

no grounds to delineate a bottom water (compare Figures 5.1 and 5.3). In the Greenland

Basin, however, relatively sharp vertical temperature and salinity gradients occur above

the core GSDW where isopycnal mixing is taking place. Thus, in the sense that the

deepest waters in the Greenland Basin are isolated by an overlying intrusion of EBDW

at these BARTLETT 89 stations, they could be considered bottom waters in much the

same manner that Smethie et al. (1988) define Eurasian Basin Bottom Water. K-I!ermann

and Luthje (1989) do not recognize a bottom water in the Greenland Basin, but simply

define the density level where T3 = 41 005 -s the upper limit of core GSDW. Alas, the

existence of such a separation of bottom waters across the entire basin cannot be assessed

with the limited number of deep stations in this study.

C. HISTORICAL COMPARISON

The only digital historical deep water data conveniently usable for this study are

those of the JOHAN HJORT 58 survey from which summer and winter data have been

selected from locations similar to the BARTLETT 89 deep stations. A quantitative

comparison of salinity is not possible since the presumed margin of error of the Mohr

titration is of the order of 0.03 PSU which is greater than the entire salinity range of the

BARTLETT 89 deep water data set. In both winter and summer 1958, however, there

appears to be a progressive increase in salinity southeastward across the Greenland Basin
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of about 0.02 PSU as is observed in 1989. The progressive increase in salinity results in

salinities becoming similar on both sides of the JMFZ trough.

The range of potential temperatures derived from reversing thermometer

tnedsureatis, having a prcamed accuracy of ±0.01C, compare well with temperatures

at collocated BARTLETT 89 stations. In both seasons of 1958, a progressive warming

trend southeastward across the basin occurs as in 1989. Most interesting is the close

agreement in potential temperatures among data sets seen in Table 5.1. In all cases

potential temperatures could be considered nearly identical taking into account the

standard deviation. The plots found in Kolermann and Liithje (1989) of potential

temperature and salinity on the density surface where Y2 = 37.457 kg m 3 also show

warm, salife waters circuiting the western and southern limbs of the deep gyre in the

Greenland Basin toward the Mohn Ridge The temperature and salinity range of these

waters seem to be in very good agreement with BARTLEIT 89 deep data though

statistical comparison is not possible. Thus, there appears to be no appreciable inter-

annual variation in ,emperature in either basin though slight cooling following the winter

season is indicated in both basins in 1958. Conclusions must be tempered, however,

since the statistical population is small and deep station spacing is sparce.
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VI. CONCLUSIONS

A thorough analysis of data obtained during the September 1989 cruise of the USNS

BARTLETT to the southern Greenland Sea, together with available supplemental and

historical data, leads to several conclusions.

Hydrographic analyses show the Jan Mayen Current (JMC) is manifested in the

eastward bowing of East Greenland Current (EGC) waters in the region of 74°N which

are confined to the Greenland Basin in their eastward extent. Historical data Dietrich,

1969; Koltermann and Liithje, 1989) show the axis of the JMC extension may vary of

order 100 km north or south of this position.

The surface signature of the JMC consists of a tongue of cold, fresh Greenland

Polar Water (GPW) which forms a shallow frontal boundary with the warmer, more saline

surface arctic waters of the Greenland Sea Gyre (GSG) to the north and the considerably

warmer, saline Atlantic surface waters of the Norwegian Atlantic and West Spitsbergen

Currents (NACIWSC). At intermediate depths the JMC consists of a system of two cores,

one of cold, moderately saline Jan Mayen Polar Water (JMPW) at -50 m and one of

warm, saline Jan Mayen Atlantic Intermediate Water (JMAtIW) at -100 m. The cold

core of JMPW (modified GPW) is displaced about 100 km southward of the warm core

of JMAtIW (modified Return Atlantic Intermediate Water (RAtIW)). The warm core

forms a frontal boundary with the cooler, more weakly stratified intermediate arctic waters

of the GSG to the north. To the south a weak front is observed between the warm core
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and the more homogeneous intermediate waters of the NAC at the southeast corner of the

Greenland Basin. Horizontal sections of various surface and intermediate properties

consistently portray a response to underlying bathymetric features indicative of the

predominantly barotropic circulation of the JMC system.

A comparison with historical data (Dietrich, 1969; Koltermann and Lfithje, 1989)

is highlighted by a significant cooling and freshening of the upper few hundred meters

of the water column in 1982 and 1989, most likely resulting from above normal GPW

influx. Little if any GPW influence is indicated in 1958. Also, a perturbation with a

RAtlW core in the seaward fringe of the EGC just south of the Greenland Fracture Zone

occurs in both 1982 and 1989 suggesting a possible semi-permanent eddy or meander at

this location which corroborates the observations of Gascard et al. (1988) and Muench

(1990b).

Strong similarities between the dynamic height field (0-1000 dbar) and the

Lagrangian trajectories of drifting ice floes (Gascard and Richez, 1989) as well as the

results of a general circulation model (Legutke, 1989) lead to the major finding of this

study. The JMC is revealed to be partly an anticyclonic meander in the seaward fringe

of the EGC, triggered by the bathymetric influence of the JMFZ, contrary to the classical

view of a continuous eastward flow solely constituting the southern limb of the GSG.

Baroclinic calculations show a total eastward meander flow of 2 Sv with half of that flow

remaining within the meander to rejoin the EGC and half being distributed between the

GSG and NAC/WSC. Baroclinic estimates of the annual liquid fresh water excess as a

result of the transport of the JMC equate to a 1.4 m layer over the survey area. This
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volume represents roughly one quarter of the total annually available volume of fresh

water in the EGC estimated by Aagaard and Carmack (1989).

Analyses of the deep data indicate isopycnal mixing of warm, saline Eurasian Basin

Deep Water (EBDW) and cold, fresh Greenland Sea Deep Water (GSDW) to yield

Norwegian Sea Deep Water (NSDW). The mixing ratios reveal that NSDW is

in,,ieasingly prevalent toward the southern limb of the deep cyclonic gyre along the JMFL

such that mixing is complete on the Greenland Basin side of the Mohn Ridge,

corroborative of the NSDW formation process hypothesized by Smethie et at. (1988) and

Swift and Koltermann (1988). Comparison with deep data from the 1982 cruises of the

METEOR and HUDSON and the 1958 cruises of the JOHAN HJORT indicates no

appreciable inter-annual fluctuation in temperature or salinity.
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